RUS ENG

НАМ 21 ГОД!

ГРУППА AMT&C - ФИНАЛИСТ РЕЙТИНГА «ТЕХНОУСПЕХ»


 

 


Гадолиний



ГАДОЛИНИЙ

1. Гадолиний металлический

Физические и химические свойства

Гадолиний — светло-серый металл. Плотность 7,895 кг/дм3. Температура плавления 1312°C, температура кипения 3280°C. Ферромагнетик, точка Кюри 292 К.

Гадолинию свойственно наивысшее среди всех элементов сечение захвата тепловых нейтронов: 46 000 барн — такова эта величина для природной смеси изотопов гадолиния.

Гадолиний медленно окисляется на воздухе при комнатной температуре, быстро — выше 100°C. При длительном хранении на открытом воздухе он постепенно тускнеет, покрываясь оксидной пленкой. При нагревании металлический гадолиний реагирует с галогенами, азотом, водородом. Взаимодействует с минеральными кислотами, кроме плавиковой, не взаимодействует с растворами щелочей

Производство

Содержание гадолиния в земной коре 5,4*10-4% по массе, в морской воде 6*10-7 мг/л. Вместе с другими редкоземельными элементами находится в минералах гадолините, монаците, бастнезите, ксенотиме, апатите.

Монацитовые и бастнезитовые руды обычно вскрывают нагреванием с серной кислотой. При этом образуются сульфаты редкоземельных эле­ментов, которые выщелачиваются из продукта реакции водой. Редкоземельные элементы извлекают из раствора осаждением в виде оксалатов или двойных сульфатов редко­земельных элементов и натрия, а уже затем эти соединения превращают в нужную техническую соль.

Универсальный способ получения совершенно чистых редко­земельных металлов заключается в восстановлении безводных фторидов кальцием. Безводные фториды редкоземельных металлов получают либо фторированием окислов безводным фтористым водородом при 575°С, либо прокаливанием фтори­дов, осажденных из водных растворов плавиковой кислотой, либо же сплавлением окислов редкоземельных металлов с бифторидом аммония.

Безводный фторид смешивают с порошком металлического кальция, Танталовый тигель с загрузкой нагревают в атмосфере аргона, пока не начнется реакция. По завершении реакции и редкоземельный металл, и шлак (фторид кальция) должны на­ходиться в расплавленном состоянии.

Полученный таким способом Гадолиний кальциетермический по содержанию контролируемых примесей должен удовлетворять требованиям и нормам ТУ 48-4-210-72 

Марка

ГдМ-1

ГдМ-2

ГдМ-3

Содержание суммы других редкоземельных металлов (европия, самария, тербия. Иттрия), % не более

0,1

0,8

1,3

Содержание других контролируемых примесей, % не более

 

 

 

Железа

0,01

0,03

0,04

Кальция

0,01

0,03

0,05

Меди

0.01

0,1

0,1

Тантала, молибдена или ниобия

0.02

0,2

0,3

Применение

Магнитные носители информации

Ряд сплавов гадолиния и особенно сплав с кобальтом и железом позволяет создавать носители информации с колоссальной плотностью записи. Это обусловлено тем, что в этих сплавах образуются особые структуры — ЦДМ — цилиндрические магнитные домены, причём размеры доменов менее 1 мкм, что позволяет создавать носители памяти для современной компьютерной техники с плотностью записи 1-9 миллиардов бит на 1 квадратный сантиметр площади носителя.

Ядерная энергетика

В атомной технике гадолиний нашел применение для защиты от тепловых нейтронов, так как этот элемент обладает наивысшей способностью к захвату нейтронов из всех элементов. Его сечение равно 49000 барн. Но из всех изотопов гадолиния наивысшей способностью к захвату нейтронов обладает его изотоп гадолиний-157, сечение захвата 254000 барн.

Сплав гадолиния и никеля применяется для изготовления контейнеров для захоронения радиоактивных отходов.

Гигантский магнетокалорический эффект

Сплав гадолиния, германия, кремния и небольшого количества железа (1 %) применяется для производства магнитных холодильников (на основе гигантского магнетокалорического эффекта). Чистый гадолиний имеет максимальное значение магнетокалорического эффекта в точке Кюри (~290 K) порядка 4 К при адиабатическом намагничивании полем 18кЭ (по данным кафедры магнетизма ТвГУ).

Так же особый интерес в последние годы привлекает к себе сплав гадолиний-тербий (монокристаллический) для производства магнитных холодильников.

Легирование титановых сплавов

Некоторое количество гадолиния постоянно расходуется для производства специальных титановых сплавов (повышает предел прочности и текучести при легировании уже около 5% гадолиния).

Радиоизотопные источники

Гадолиний-148, испытывающий альфа-распад (полураспад 93 года), является безопасным и в тоже время исключительно мощным источником тепла для радиоизотопных термоэлектрогенераторов.

Гадолиний-153 используется в качестве источника излучения в медицине, например, для диагностики остеопороза.

Рентгеноконтрастный препарат гадодиамид, содержащий гадолиний, используется преимущественно для внутривенного контрастирования при МРТ-исследованиях.

Сплавы

Сплав гадолиния с церием и рутением в области сверхнизких температур приобретает сверхпроводимость и в то же время обнаруживает слабый ферромагнетизм, что находит свое применение в научных исследованиях.

Сплав гадолиния с титаном (он впервые был получен в нашей стране) применяют в качестве активатора в стартерах люминесцентных ламп.

Сплав гадолиний-железо применяется как очень емкий аккумулятор водорода, и может быть применен для водородного автомобиля.

Постоянные магниты

Гадолиний используется в небольших количествах при производстве постоянных магнитов на основе сплава Самарий-Кобальт, а так же Неодим-Железо-Бор.

 

2. Оксид гадолиния (Gd2O3)

Физические и химические свойства

Оксид (сесквиоксид) гадолиния  Gd2O3 – представляет собой белые кристаллы не растворимые в воде. Плотность 7,618 г/см3.  Получают, как правило разложением Gd2(C2O4)3, Gd(NO3)3 или других соединений на воздухе, обычно при 800-1000 °С.

Окись гадолиния поглощает углекислоту из воздуха, а при нагревании в воде темнеет, но восстановления не обнаруживает; она гигроскопична и хорошо растворяется в кислотах. При действии аммиака из растворов солей садится желатинообразный гидрат гадолиния.  Оксид Gd2О3 обладает основными свойствами, ему отвечает основание Gd(ОН)3.

Производство

Оксид гадолиния получают в процессе производства металлического гадолиния, как было описано выше. Окись гадолиния по содержанию контролируемых примесей должна удовлетворять требованиям и нормам ТУ 48-4-20-72

Марка

 

ГдО-1

ГдО-2

ГдО-3

ГдО-4

ГдО-5

ГдО-6

Содержание окисей других редкоземельных металлов, % не более

Самария

1.10-4

5.10-4

5.10-3

1.10-2

-

-

Европия

1.10-4

5.10-4

5.10-3

1.10-2

-

-

Тербия

1.10-4

5.10-4

5.10-3

1.10-2

-

-

Иттрия

1.10-4

5.10-4

5.10-3

1.10-2

-

-

Сумма самария, европия, тербия и иттрия окисей

 

-

-

-

-

0,1

0,5

Содержание прочих контролируемых примесей, % не более

Кальция

5.10-4

5.10-4

1.10-2

1.10-2

5.10-2

5.10-2

Железа

1.10-4

1.10-4

1.10-3

5.10-3

1.10-2

1.10-2

Меди

1.10-4

5.10-4

1.10-3

5.10-3

1.10-2

1.10-2

Кремния

1.10-3

1.10-3

2.10-2

3.10-2

-

-

Хлора

1.10-2

1.10-2

5.10-2

0.1

-

-

Применение

Оксид гадолиния применяется для выращивания монокристаллов гадолиний-галлиевого граната (ГГГ) и гадолиний-скандий-галлиевого граната (ГСГГ).  ГГГ - является материалом подложек для наращивания эпитаксиальных пленок железных гранатов, используемых в магнитных запоминающих устройствах, а так же ювелирный поделочный камень.

На основе ГСГГ изготавливают лазерные системы с предельно высоким КПД и сверхвысокими параметрами лазерного излучения. В принципе ГСГГ на сегодняшний день является первым в достаточной степени изученным и имеющим отработанную технологию производства лазерным материалом — обладающим высоким КПД преобразования и пригодным для создания лазерных систем для инерциального термоядерного синтеза.

Оксид гадолиния используется для варки специального стекла, поглощающего тепловые нейтроны. Самый распространенный состав такого стекла: оксид бора-33 %,оксид кадмия-35 %, оксид гадолиния-32 %.

Оксиды гадолиния, самария и европия входят в состав защитных керамических покрытий и красок, используемых для  защиты от тепловых нейтронов в ядерных реакторах. В ряде ТВЭЛ используется таблетки содержащий оксид гадолиния.

Окись гадолиния Gd2O3 используют как один из компонентов железо-иттриевых ферритов.

3. Другие соединения гадолиния и их применение

Гексаборид гадолиния применяется для изготовления катодов мощных электронных пушек и рентгеновских установок, ввиду самой маленькой работы выхода из всех боридов редких земель, и его работа в 2,05 эВ сравнима с работой выхода щелочных металлов (калий, рубидий, цезий).

Использование ионов гадолиния для возбуждения лазерного излучения позволяет создать лазер, работающий в ближнем ультрафиолетовом диапазоне с длиной волны 0,31 мк.

Хлорид гадолиния применяется для блокады клеток Купфера при лечении печени.

Теллурид гадолиния может работать в мощном потоке нейтронов как очень хороший термоэлектрический материал (термо-э.д.с 220—250 мкВ/К). Селенид гадолиния имеет отличные термоэлектрические свойства и весьма перспективный и применяемый материал в производстве радиоизотопных источников энергии.

Для регулирования атомного реактора применяется так же борат гадолиния. Растворимые соединения гадолиния могут быть использованы для стабилизации растворов, получаемых при переработке ТВЭЛов растворением в кислотах для последующего разделения. Стабилизирующее действие солей гадолиния проявляется в способности «глушить» ядерные реакции в таких растворах, и позволяет осуществлять ряд технологических операций, связанных с концентрированием таких растворов, а значит с уменьшением критического объема и образованием критических масс.

В небольшом объеме некоторые соединения гадолиния применяются для получения сверхнизких температур в научных исследованиях. Так, например, сульфат гадолиния при размагничивании вблизи абсолютного нуля температур позволяет снизить температуру до 0,0001 К. Наряду с сульфатом гадолиния для получения сверхнизких температур используют так же и хлорид гадолиния.

Люминофор  оксисульфид гадолиния позволяет получать немного более контрастные рентгеновские снимки. Молибдат гадолиния — компонент галлий-гадолиниевых гранатов. Эти материалы представляют большой интерес для оптоэлектроники. А селенид гадолиния Gd2Se3 обладает полупроводниковыми свойствами, что находит применение в электронике.

Ванадат гадолиния с ионами неодима и тулия применяется для производства твердотельных лазеров, применяемых для лучевой обработки металлов и камня, а так же и в медицине.

 


Страница 1 - 3 из 3
Начало | Пред. | 1 | След. | Конец По стр.

Возврат к списку статей