Изобретение относится к холодильной или тепловой технике, а именно к холодильным машинам или тепловым насосам, использующим магнитный материал в качестве рабочего тела и магнитокалорический эффект для охлаждения или нагрева.
Известны холодильные машины, работающие по активному магнитному регенеративному (AMP) холодильному циклу [патенты США 3413814, 4107935, 4408463, 4507928, 4332135, 5934078, 6526759]. Согласно результатам теоретических и экспериментальных исследований, холодильные машины с AMP циклом являются наиболее эффективными среди магнитных холодильников, работающих в области температур выше 20 К [Tishin A.M., Spichkin Y.I. Magnetocaloric effect and its applications, 2003, loP Publishing, Bristol & Philadelphia, 475 pp.]. Особенностью AMP холодильных машин является то, что рабочее тело (магнитный материал) в таких устройствах используется не только для охлаждения в результате адиабатического размагничивания, но также в качестве регенератора. Такая схема позволяет повысить эффективность устройства и расширить диапазон его рабочих температур.
Помимо рабочего тела-регенератора замкнутый рабочий контур AMP холодильника включает в себя холодный и горячий теплообменники, а также устройство, обеспечивающее перемещение теплоносителя по контуру (реверсивный нагнетатель или насос). На фиг.1 представлена типовая схема рабочего контура AMP холодильника [патент США 3413814]. Здесь 1 - магнит, 2 - активный магнитный регенератор, 3 - холодный теплообменник, 4 - горячий теплообменник, 5 - реверсивный нагнетатель. AMP цикл состоит из двух адиабатических стадий (намагничивание/размагничивание) и двух стадий, осуществляемых при постоянном магнитном поле (во время этих стадий происходит продувка теплоносителя через контур). Режим работы устройства во многом зависит от соотношения эффективной теплоемкости теплоносителя и регенератора. Если теплоемкость регенератора намного больше теплоемкости теплоносителя, то температурный профиль внутри регенератора не изменяется и за время пока происходит продувка теплоносителя. На первой стадии цикла поршень нагнетателя находится в крайнем правом положении (теплоноситель находится в холодном теплообменнике), а магнитный материал в регенераторе адиабатически намагничивается, что вызывает повышение его температуры на величину магнитокалорического эффекта. На второй стадии цикла (горячая продувка) с помощью нагнетателя происходит перемещение теплоносителя от холодного теплообменника к горячему, при этом тепло, выделившееся при намагничивании в магнитном регенераторе, передается теплоносителю и выделяется в окружающую среду в горячем теплообменнике. На третьей стадии цикла, когда поршень нагнетателя находится в крайней левой позиции и движения теплоносителя в контуре не происходит, магнитный материал в регенераторе адиабатически размагничивается, что вызывает его охлаждение на величину магнитокалорического эффекта. На четвертой завершающей стадии цикла (холодная продувка) теплоноситель под действием поршня нагнетателя перемещается в обратном направлении (от горячего теплообменника к холодному), охлаждается в регенераторе и поступает в холодный теплообменник, где охлаждает нагрузку. Потоки теплоносителя во время холодной и горячей продувок должны иметь противоположные направления. Таким образом, повторение цикла вызывает охлаждение холодного теплообменника, т.к. тепло отбирается от нагрузки и отдается в окружающую среду в горячем теплообменнике. Описанное устройство может также использоваться лля перекачки тепла от тела с меньшей температурой к телу с большей температурой, т.е. в качестве теплового насоса. В качестве теплоносителя в рассмотренной тепловой машине может использоваться жидкость или газ, а рабочее тело может представлять собой массивный материал с проделанными в нем отверстиями, набор пластин с соответствующим зазором, порошкообразный материал и другие конфигурации, обеспечивающие прохождение потока теплоносителя.
Страница
1 - 1 из 3
Начало | Пред. |
123
|
След. |
Конец
| Все