Активно разрабатываются устройства, позволяющие проводить запись и считывание информации в объеме материала, то есть осуществлять трехмерное хранение информации. Использование трехмерной (3D-память) оптической памяти позволит записывать до 1012 бит на 1 см3. Место бита в объеме материала может быть определено с помощью простых пространственных, спектральных или временных координат. Так, например, при голографической записи, концепция которой возникла еще в 1960-х годах, информация хранится в толще среды как "страницы" электронных изображений (то есть отдельные биты информации сохраняются коллективно).
Если упомянутые нами выше DVD имеют на каждой стороне лишь по два слоя для записи информации, то развиваемая сейчас двухфотонная технология записи позволяет использовать по нескольку сот слоев на каждой стороне диска (созданные прототипы имеют 100 слоев при толщине 8 мм). При этом методе записи атом или молекула могут перейти из одного энергетического состояния в другое только при одновременной абсорбции двух фотонов. Использование двух лазерных лучей (возможно, даже разной длины волны) позволяет легко варьировать месторасположение бита информации в толще материала. Индуцированные изменения при этом могут быть зафиксированы как изменения абсорбции, флуоресценции, отражательной способности или электрических свойств материала в точке расположения бита. Такая технология позволит сохранять до 100 Гбайт информации на одном диске того же, что и CD и DVD, размера. Одной из перспективных сред, которая может, например, абсорбировать или флуоресцировать при записи битов, является материал spirobenzopyran. Однако при комнатной температуре записанная в нем информация может храниться не более 20 часов. Неограниченно долго данный материал может сохранять информацию только при температуре -32°С, то есть при температуре сухого льда. Исследуется также возможность использования для двухфотонной записи фотохромного протеина bacteriorhodopsin и нитронафтиальдегида (rhodamine B).
Ведутся также исследования новых возможностей трехмерной записи информации, делающих ее в некотором смысле четырехмерной. При этом способе записи предлагается помимо обычной использовать также такую информацию о каждой точке записи, как длина волны, время или молекулярная структура (например, записывать информацию в одной и той же точке пространства на разных длинах волн). Таким образом, можно будет записывать до 100 бит информации в одной точке пространства микронного размера.
Однако чисто оптические методы записи, в которых среда для записи (или ее часть) расположена на заметном расстоянии от лазера, имеют одно важное ограничение — минимальный размер бита записываемой информации ограничен величиной Х/2. Это обусловлено дифракционными ограничениями. Даже при использовании голубого твердотельного лазера линейный размер одного бита информации может быть лишь около 215 нм. Хотя принципиальных ограничений на создание твердотельных лазеров с длиной волны менее 400 нм нет, но трудности создания хорошо управляемых компактных лазеров заметно возрастают при дальнейшем уменьшении длины волны. Таким образом, следует ожидать, что в случае даже полного развития трехмерной памяти и при использовании голубого лазера чисто оптические методы позволят записывать в одном кубическом сантиметре не более 1014—1015 бит информации. Для достижения в компьютерах плотности записи 1014/см3 понадобится не менее 15—20 лет.